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Of course this does not cover all the class notes and it is not enough
to do the midterm. It is just a way to extract the very very important
part of the course and I do not mean that you do not have to know the
remaining part.
Main Advise: Do not try to learn by heart, try first to understand
what is going on and you will remember.
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What have we learnt?

We have learnt at this point how to solve a system of equations, linear
transformation, matrices and connection between all these notions.

0.1 Systems

We first wanted to solve a system of linear equation:
$

&

%

a1,1x1 ` ¨ ¨ ¨ ` a1,nxn “ b1

¨ ¨ ¨

am,1x1 ` ¨ ¨ ¨ ` am,nxn “ bm

p˚q

To this system we associate two matrix:

1. THE COEFFICIENT MATRIX:
¨

˝

a1,1 ¨ ¨ ¨ a1,n

¨ ¨ ¨

am,1 ¨ ¨ ¨ am,n

˛

‚

2. THE AUGMENTED MATRIX:
¨

˝

a1,1 ¨ ¨ ¨ a1,n b1

¨ ¨ ¨

am,1 ¨ ¨ ¨ am,n bm

˛

‚

Let b “

¨

˚

˚

˚

˚

˝

b1

¨

¨

¨

bm

˛

‹

‹

‹

‹

‚

P Rn.

The faster way to solve a system is to ROW REDUCE the augmented
matrix corresponding to it until you obtain the ROW REDUCE ECHE-
LON FORM.
Write the row reduction that you are doing and make sure it is one of
these operation you are doing:

1. Replacement: Ri Ð Ri ` λR j, λ a scalar;
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2. Scale: Ri Ð λRi, λ a non-zero scalar;

3. Switch: Ri Ø R j.

(Remember that we are allowed to do such operation because they lead
to equivalent augmented matrix corresponding to equivalent system, so
you are not changing the solution set of your system, and that is what
you want to find. So, mentioning with the symbol „ that two matrices
are equivalent is important.)
We have seen two other equivalent ways to see the system above:

1. matrix equation form Ax “ b.

2. vector equation form a1x1 ` ¨ ¨ ¨ ` anxn “ b where ai are the column
of the coefficient matrix A.

So if I ask you solve the system p˚q or Ax “ b or a1x1`¨ ¨ ¨`anxn “ b, the
method will be the same as describe above unless mentioned differently.
Once you solve a system, you might have to describe the full solution
set. If the last column of the augmented matrix is not a pivot column
the solution set is empty, and you have nothing to do. Otherwise, the
system will have only one solution if there is no free variable here it is
also easy or infinitely many if there are free variable and in which case
we will express the basics variable in term of the free variables.
There are several way to do this, but most likely you might have to give
me the solution set in vector parametric form where the parameter are
the free variable. That mean that you give a solution of the system on
the form

¨

˚

˚

˚

˚

˝

x1

¨

¨

¨

xn

˛

‹

‹

‹

‹

‚

“ v0 ` t1v1 ` ¨ ¨ ¨ ` tnvn

where ti is the parameters and vi are vector in Rn.
If I ask you for a geometric description. I am looking for how the solution
looks like in Rn: If you obtain:
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1.

¨

˚

˚

˚

˚

˝

x1

¨

¨

¨

xn

˛

‹

‹

‹

‹

‚

“ v0 ` t1v1, this is a line passing through the point of

coordinate v0 with direction v1.

2.

¨

˚

˚

˚

˚

˝

x1

¨

¨

¨

xn

˛

‹

‹

‹

‹

‚

“ v0 ` t1v1 ` t2v2, this is a plane passing through the point

of coordinate v0 and with direction v1 and v2.

3.

¨

˚

˚

˚

˚

˝

x1

¨

¨

¨

xn

˛

‹

‹

‹

‹

‚

“ v0`t1v1`t2v2`t3v3, this is a space of 3 dimension though

the point v0 and with direction v1, v2, v3

Bigger than this you cannot represent it in your head unfortunately but
you can imagine what is going on...

0.2 Vectors

0.2.1 Linear independence

A set of vector tv1, ¨ ¨ ¨ , vnu (for instance the set of the column vector
of a matrix) in Rm is linearly independent if the homogeneous vector
equation x1v1` ¨ ¨ ¨ ` xnvn “ 0 has only one solution, the trivial solution.
Otherwise we say that the set is linearly dependent.
In order to know if a set of vector is linearly independent of no, you can
as usual ROW REDUCE the augmented matrix associated to the system
and see if there are free variable of not.
Here a characterization of linear dependence.

Theorem 0.2.1 (Characterization of linearly dependent sets). An in-
dexed set S “ tv1, ¨ ¨ ¨ , vru of two vectors is linearly dependent if and only
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if one of the vectors in S is a linear combination of the others. In fact, if
S is linearly dependent and v1 ‰ 0 then some v j (with j ą 1) is a linear
combination of the preceding vectors v1, ¨ ¨ ¨ , v j´1.

0.2.2 Span

A set of vector tv1, ¨ ¨ ¨ , vnu (for instance the set of the column vector
of a matrix) in Rm spans Rm if the equation x1v1 ` ¨ ¨ ¨ ` xnvn “ b has
at least a solution for all b P Rm. We write also Spantv1, ¨ ¨ ¨ , vnu “

tx1v1 ` ¨ ¨ ¨ ` xnvn, x1, ¨ ¨ ¨ , xn P Ru “ Rm.
Here we have equivalent way to see the spanning problem, and the fourth
point will be the most useful in practice since you can just row reduce the
matrix and see if you have a pivot position in each row or not. Let A be
an mˆ n matrix. Then the following statements are logically equivalent.
That is, for a particular A, either they are all true statements or they
are all false.

1. For each b in Rm, the equation Ax “ b has a solution.

2. Each b in Rm is a linear combination of the column of A.

3. The columns of A span Rm.

4. A has a pivot position in every row.

0.3 Linear transformation

We have see also linear transformation T : Rn Ñ Rm. That is a
transformation such that

Tpu` vq “ Tpuq ` Tpvq, f or all u, v P Rn

and

Tpcuq “ cTpuq, f or all u P Rn and cscalar

You could also just say that

Tpcu` dvq “ cTpuq ` dTpvq, f or all u, v P Rn and c, d scalars

We also have see that a matrix transformation is a (linear) transforma-
tion T : Rn Ñ Rm which maps x into Ax, for a mˆ n matrix.
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We have prove that ANY linear transformation is a matrix transforma-
tion and the corresponding matrix is called a standard matrix. You can
compute it with computing the image of the standard vector ei by T

rTpe1q, ¨ ¨ ¨ ,Tpenqs

where ei is the ith vector column of the identity matrix In.
We define the notion of one-to-one and onto mapping:
A mapping T : Rn Ñ Rm is said to be onto Rm if each b in Rm is the
image of at least one x in Rn.
A mapping T : Rn Ñ Rm is said to be one-to-one if each b in Rm is the
image of at most one x in Rn.
That is the characterization of one-to-one you will mostly use in practice
for linear transformation:

Theorem 0.3.1. Let T : Rn Ñ Rm be a linear transformation. Then
T is one-to-one if and only if the equation Tpxq “ 0 has only the trivial
solution.

And now you just have to retranslate in term mentioned before and
you will know what to do

Theorem 0.3.2. Let T : Rn Ñ Rm be a linear transformation and let A
be the standard matrix for T. Then:
1. T maps Rn onto Rm if and only if the columns of A span Rm (this

is also equivalent to every vector of Rm is a linear combination of
the columns of A) ;

2. T is one-to-one if and only if the columns of A are linearly indepen-
dent.

0.4 Matrices

1. If A is a mˆn matrix, that is, a matrix with m rows and n columns,
then the scalar entry in the ith row and jth column of A is denoted
by ai, j and is called the pi, jq entry of A. Each column of A is a list of
m real numbers, which identifies with a vector in Rm. Often, these
columns are denoted by a1, ¨ ¨ ¨ , an and the matrix A is written as

A “ ra1, ¨ ¨ ¨ , ans
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Observe that the number ai, j is the ith entry (from the top) of the
jth column vector a j. The diagonal entries in an m ˆ n matrix
A “ rai, js are a1,1 , a2,2, a3,3, ¨ ¨ ¨ and they form the main diagonal
of A. A diagonal matrix is a square n ˆ n whose non diagonal
entries are zero. An example is the nˆn identity matrix. An mˆn
matrix whose entries are all zero is a zero matrix and is written
as 0. The size of a zero matrix is actually clear from the context.

2. (Equality) Two matrix are equal if they have same size (i.e same
number or row and same number of column) and if their corre-
sponding columns are equals which amounts to saying that their
corresponding entries are equal.

3. (Sum) The sum of two matrix A and B is defined if and only if the
two matrices HAVE THE SAME SIZE. The sum of two matrix mˆn
is a matrix m ˆ n whose columns is the sum of the corresponding
columns. That is, the entries of A`B is the sum of the corresponding
entries in A and B.

4. (Scalar multiplication) If r is a scalar and A is a matrix m ˆ n,
then the scalar multiple rA is the matrix whose the columns are
r times the corresponding column in A. We denote ´A for p´1qA
and A´ B “ A` p´1qB.

5. 1et A be a matrix m ˆ n and B be a matrix n ˆ p with column b1,
b2, ¨ ¨ ¨ , bp, then the product AB is defined and it is a mˆ p matrix
whose column are Ab1, Ab2, ¨ ¨ ¨ , Abp. That is,

AB “ Arb1, ¨ ¨ ¨ , bps “ rAb1, ¨ ¨ ¨ ,Abps

Each column of AB is a linear combination of the column of A using
the weights from the corresponding column of B. We have that the
pi, jq entry of the matrix AB is

pabqi, j “
n
ÿ

k“1

ai,kbk, j

for each i “ 1, ¨ ¨ ¨ ,m and j “ 1, ¨ ¨ ¨ , p.
Be careful, in order for the multiplication to be defined it is neces-
sary that the NUMBER OF COLUMNS OF A equals the NUMBER

1. L
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OF ROWS IN B. Also the matrix AB has size mˆp. The number of
rows is equal to m (number of row of A) and the number of column
is equal to p (number of column of B).

6. (Powers) If A is an nˆn matrix and if k is a positive integer, then
Ak denotes the product of copies of A

Ak
“ A ¨ ¨ ¨A

If k “ 0, A0 “ In.

(WARMINGS)

1. Be careful, in general AB ‰ BA. We say that A and B commute
with another if AB “ BA.DO NOT FORGET THIS IS NOT TRUE
IN GENERAL.

2. The cancelation laws DO NOT hold for matrix multiplication. That
is AB “ AC, then it is NOT TRUE in general that B “ C. You could
have AB “ AC but still B ‰ C.

3. If a product AB is the zero matrix, you CANNOT conclude in gen-
eral that either A “ 0 or B “ 0. You could have AB “ 0 but still
A ‰ 0 or B ‰ 0.

Given an m ˆ n matrix A, the transpose of A is the n ˆ m matrix,
denoted by AT whose columns are formed from the corresponding rows
of A. Note that pABqT “ BTAT and pATqT “ A.

0.4.1 Inverse

INVERTIBLE MATRICES ARE SQUARE MATRICES.
An n ˆ n matrix A is said to be invertible if there is an n ˆ n matrix
denoted A´1 such that

A´1A “ AA´1
“ In

where In is the n ˆ n identity matrix. The matrix A´1 is called the
inverse of A.
A matrix that is not invertible is sometimes called a singular matrix,
and an invertible is called a non singular matrix.
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Theorem 0.4.1. Let A “
ˆ

a b
c d

˙

. If ad´ bc ‰ 0, then A is invertible

and

A´1
“

1
ad´ bc

ˆ

d ´b
´c a

˙

If ad´ bc “ 0, then A is not invertible. The quantity ad´ bc is called the
determinant of A, and we write

detpAq “ ad´ bc

Theorem 0.4.2. If A is invertible nˆ n matrix, then for each b in Rn,
the equation Ax “ b has the unique solution x “ A´1b.

Note that pATq´1 “ pA´1qT, pABq´1 “ B´1A´1 and pA´1q´1 “ A.
An elementary matrix is one that is obtained by performing a single
elementary row operation on the identity matrix.

Theorem 0.4.3. An n ˆ n matrix A is invertible if and only if A is
row equivalent to In and in this case. any sequence of elementary row
operation that reduces A to In also transform In into A´1.

Row reduce the augmented matrix rA, Is. If A is row equivalent to I,
then rA, Is is row equivalent to rI,A´1s, Otherwise, A does not have an
inverse.

Theorem 0.4.4 (The invertible matrix theorem). Let A be a square
nˆ n matrix. Then the following statements are equivalent. That is, for
a given A, the statement are either all true or all false.

1. A is an invertible matrix

2. A is row equivalent to the nˆ n identity matrix.

3. A has n pivot positions.

4. The equation Ax “ 0 has only the trivial solution

5. The columns of A form a linearly independent set.

6. The linear transformation x ÞÑ Ax is one-to-one.

7. The equation Ax “ b has at least one solution for each b in Rn.

8. The equation Ax “ b has a unique solution for each b in Rn.
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9. The columns of A span Rn.

10. The linear transformation x ÞÑ Ax maps Rn onto Rn.

11. There is an nˆ n matrix C such that CA “ I.

12. There is an nˆ n matrix D such that AD “ I.

13. AT is an invertible matrix.

Now you know, that if you let A and B be square matrices. If AB “ I,
then A and B are both invertible, with B “ A´1 and A “ B´1.

A linear transformation T : Rn Ñ Rn is invertible if there exists a
function S : Rn Ñ Rn such that

S ˝ T “ T ˝ S “ In

That is, for all x P Rn, SpTpxqq “ x and TpSpxqq “ x.
The next theorem shows that if such an S exists, it is unique and must
be a linear transformation. We call S the inverse of T and write it as
T´1.

Theorem 0.4.5. Let T : R Ñ Rn be a linear transformation and let A
be the standard matrix for T. Then T is invertible if and only if A is
an invertible matrix. In that case the linear transformation S given by
Spxq “ A´1x is the unique function satisfying

S ˝ T “ T ˝ S “ In

Note that the standard matrix of the composition of two linear trans-
formation is the product of the standard matrix of this linear transfor-
mation (be careful with the order of this product).


